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Abstract 

 
 

Cost estimators use a variety of methods to develop estimates at completion 

(EACs) and new methods continue to be developed.  Research has shown there is no best 

method for computing EACs for all acquisition contracts.  However, some methods 

perform better under specific circumstances.  In 2009, Captain Trahan investigated the 

use of a Gompertz growth model for developing EACs.  She found that this method is 

more reliable for Over Target Baseline (OTB) contracts than the standard indexed based 

approaches.  Captain Trahan’s model is an excellent model to use for OTB contracts or 

contracts with a high likelihood of becoming an OTB contract.  In this study, we attempt 

to develop a model that predicts whether an acquisition contract is likely to become an 

OTB.  By identifying contracts that are likely to become OTB, we can apply the 

Gompertz growth model to develop better EACs.  Furthermore, an OTB, by definition, 

recognizes a cost overrun.  Therefore, the ability to predict OTBs would allow us to 

understand what may cause cost overruns.  However, our models indicate that we are 

unable to predict an OTB.  This indicates that the OTB process may be used randomly 

which leads us to question the benefits of OTBs.
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PREDICTING OVER TARGET BASELINE (OTB) 
ACQUISITION CONTRACTS 

 
 
 

I: Introduction 
 

Background 
 
 Approximately twenty percent of all acquisition contracts in the DoD experienced 

cost overruns over the past 20 years (based on analysis dataset).  An Over Target 

Baseline (OTB) formally recognizes these cost overruns.  By examining eighty percent of 

contracts between 1990 and 2005 for Major Defense Acquisition Programs (MDAPs), we 

identify over $26 billion in cost overruns (BY09$).  The average cost overrun for each 

contract experiencing an OTB is $321 million (BY09$). 

 Since cost overruns are a major concern for the entire Department of Defense, it is 

important to understand why they occur. Two potential reasons for cost overruns are: 1) 

The existing cost estimates are not accurate to begin with which leads to the actual costs 

being far from the estimate and 2) Program costs are not effectively controlled to prevent 

overruns.  Solutions to these problems include improving the original cost estimates, 

improving our control mechanisms for acquisition programs, and managing factors that 

lead to cost overruns.  The DoD uses the Earned Value Management (EVM) system for 

monitoring and controlling acquisition programs.  EVM requires the reporting of cost, 

schedule, and performance metrics for large acquisition systems.  Two important EVM 

metrics determine how a program is doing and whether or not a program must make 

changes to get back on track.  The Cost Performance Index (CPI) tells management 
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officials whether or not a program is experiencing cost overruns to date and the Schedule 

Performance Index (SPI) tells management officials whether or not a program is currently 

behind schedule or not. 

 In order to ascertain whether a program will experience cost overruns at 

completion, it is necessary to know the Budget at Completion (BAC) and the Estimate at 

Completion (EAC).  We can determine if a program will experience cost overruns by 

comparing the budgeted amount for a program (BAC) to the estimated cost at completion 

(EAC).  Particularly, contracts experience a cost overrun at completion, also known as a 

variance at completion (VAC), when the EAC is larger than the BAC. 

 Determining the BAC is straightforward as it represents the planned amount of 

money allocated to a specific program and it is the amount included in the budget.  

However, developing the EAC is not as straightforward.  The EAC is an estimate for 

what the program will actually cost once all of the work is completed.  There is a vast 

amount of research in the area of developing accurate EACs.  Some methods work better 

than others and several methods only work well under specific circumstances.  Based on 

past research, it is not clear that there is one superior method of developing an accurate 

EAC for all acquisition contracts. 

 To improve the accuracy of EACs, cost estimators can focus on those programs 

where a specific estimating method performs better.  By applying these superior 

estimating methods properly, cost estimators can develop EACs that are more accurate.  

In this thesis, we investigate the use of one of these methods in particular.  In 2009, 

Captain Trahan investigated the use of growth models as a tool to develop better EACs in 

her AFIT thesis.  She found that the growth model she applied to acquisition contracts 
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performed superior to the standard indexed based approaches for developing EACs 71% 

of the time for Over Target Baseline (OTB) contracts (Trahan, 2009).  Therefore, her 

method may provide a more accurate EAC for a specific type of acquisition contract:  

OTB contracts. 

 Finally, the DoD can address cost overruns by identifying the factors that lead to 

cost overruns and properly managing these factors.  We can try to identify these factors 

by using statistical models that quantify the relationships between overruns and a variety 

of factors.  While this thesis focuses on the topic of OTBs, it is important to recognize 

that an OTB is not only a special case of contracts, but an OTB also identifies a cost 

overrun.  Based on the analysis of contracts in our dataset, there have been over $17 

billion in cost overruns related to OTBs since 2000.  The ability to identify factors related 

to OTBs provides insight into what may lead to cost overruns for the DoD. 

Purpose of this Study 

 This study has two purposes:  1) Develop better EACs and 2) Predict whether an 

OTB would occur, which signifies a recognized cost overrun.  To focus on our goal of 

developing better EACs, we would like to apply Captain Trahan’s growth models to OTB 

contracts.  However, cost estimators do not always know whether a contract will become 

an OTB contract.  An over target baseline (OTB) occurs when the original baseline, in 

terms of costs, becomes unrealistic and for a variety of reasons the program ends up with 

a revised baseline for measurement purposes.  Consequently, a program may be 

converted to an OTB and receive a new baseline later on in the program’s life.  To use 

Captain Trahan’s models, we would like to know not only what contracts are currently 

OTB contracts, but also what contracts have a high likelihood of becoming an OTB 
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contract.  If we can accurately predict which contracts have a high likelihood of 

becoming OTB contracts, we can apply Captain Trahan’s growth models to these 

programs to develop EACs that are more accurate. 

 This thesis attempts to build a model that predicts whether a contract is likely to 

become an OTB contract.  The output of this model provides indicators as to what 

influences the likelihood of a contract being an OTB and hence experiencing a cost 

overrun.  The output also allows us to develop better EACs for contracts that we identify 

as likely to be an OTB. 

 In military acquisitions, it is imperative to have EACs that are more accurate; 

otherwise, the DoD loses out on content.  To elaborate, having too high of an EAC means 

that the DoD may be unable to fund other programs that the war fighter may need.  

Conversely, by having too low of an EAC, there will be issues developing and producing 

an essential program due to a lack of sufficient funds.  Furthermore, if one program needs 

additional funding, decision makers may decide to borrow from another program, which 

in turn has the potential to stunt progress on both programs. 

 Using logistic regression models, we can try to find the best predictors that 

estimate how likely a contract is to become an OTB contract.  These predictors may 

range from cost and schedule performance indicators to a variety of qualitative 

characteristics of the program.  The implications of an effective model for predicting 

OTBs are substantial.  Not only would this tell us if a contract is on the path to 

experiencing cost overruns, but it also allows us to develop better EACs. 
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Study Process 

 Our study begins by developing a better understanding of the requirements and 

importance of Earned Value Management (EVM) and its associated performance metrics.  

Then we look at research related to developing EACs and the issues associated with 

different estimating methods.  That section also includes an in depth look at the OTB 

process.  In the Data and Methodology section, we describe the sources of data for this 

study and the purpose of logistic regression models.  Lastly, the results and the 

implications of these results are in Chapters IV and V. 
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II: Literature Review 

 
 
Introduction 
 
 This chapter provides a better understanding of the concepts of Earned Value 

Management (EVM) and Over Target Baselines (OTBs).  We first look at why analysts 

use EVM and discuss some of the important EVM performance measures and indices 

within EVM.  The next step is to examine how Estimates at Completion (EACs) are 

calculated and look briefly at some of the past EAC research.  Then we look specifically 

at calculating EACs using the Gompertz growth model as it pertains to Over Target 

Baseline (OTB) contracts.  Since the Gompertz growth model provides us with a superior 

method of calculating EACs specifically for OTBs, we also study the OTB process and 

the typical characteristics of OTB contracts.  Finally, we look at how other studies utilize 

logistic regression models and discuss the use of a logistic regression model for 

predicting OTBs, which allows cost estimators to predict cost overruns and calculate 

EACs that are more accurate. 

Earned Value Management (EVM) 

 The Air Force Cost Analysis Handbook describes the primary purpose of Earned 

Value Management as: 

Earned Value Management (EVM) is a tool that provides Government and 
contractor system Program Managers (PMs) visibility into the technical, cost, and 
schedule performance of their projects, as well as the capability to mitigate the 
risks of a program not meeting its time, budget, and performance goals.  (Air 
Force Cost Analysis Agency, 2007) 

 
The Federal Acquisition Regulation (FAR) dictates that an earned value management 

system is required for all major federal acquisition programs (GSA FAR Secretariat, 
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2009).  Specifically the Defense Federal Acquisition Regulation Supplement (DFARS) 

states that each cost or incentive acquisition contract in the DoD exceeding $20 million is 

required to adhere to the EVM standards and each contract exceeding $50 million is 

required to have a DCMA validated EVM system (Department of Defense, 2009).  

Furthermore, the DoD adopted the industry standards for EVM, the ANSI/EIA 748 

standards, which includes 32 measures that acquisition programs must adhere to. 

Within the EVM framework, each contract for an acquisition program has a 

performance measurement baseline (PMB) which is the time-phased budget for the 

contract.  It includes the costs associated with all of the planned work packages for the 

specific contract.  The Budget at Completion (BAC) for a contract is the total budgeted 

amount that encompasses all of the required work from start to finish.  As the contract 

progresses and work is completed, the contractors, as well as the government, develop 

estimates at completion (EACs) which are revised projections of what the contract will 

cost at completion.  Analysts compare the EACs to the PMB to measure contract 

performance and to determine the likelihood of completing a contract within the original 

budget.  If the EAC is greater than the BAC (the PMB at completion), this is a positive 

Variance at Completion (VAC) and the program office expects to incur costs in excess of 

the amount budgeted for.  Figure 1 shows the PMB, EAC, and BAC. 
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Figure 1:  Performance Measurement Baseline (Christensen, 1999) 

While the Variance at Completion tracks performance at the point of contract 

completion, there are performance indices that track performance throughout the project.  

The Cost Performance Index (CPI) tracks whether or not the amount of money spent on 

the contract is more that the amount budgeted for at a given point in time.  The Schedule 

Performance Index (SPI) tracks whether or not the amount of work scheduled is complete 

at a given point in time.  The Schedule Cost Index, which is the product of the SPI and 

CPI, reflects both schedule and cost performance.  The Composite Index combines the 

SPI and CPI by specifying weights for the cost performance (CPI) and schedule 

performance (SPI).  These four indices are in Table 1. 
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Table 1:  EVM Performance Indices 

 
CPI= Budgeted Cost of Work Performed (BCWP) 

Actual Cost of Work Performed (ACWP) 
 

SPI = Budgeted Cost of Work Performed (BCWP) 
Budgeted Cost of Work Scheduled (BCWS) 

 
         SCI =       CPI * SPI 

 
         Composite Index =    (w1*CPI) + (w2*SPI) 

 
Developing Estimates at Completion (EACs) 

 The PMB is easy to identify, it is simply the given budget for the contract less the 

management reserve.  However, there is a variety of ways to calculate the EAC.  

Regardless of how the EAC is calculated, it is important to know that it is accurate in 

determining the likely cost at completion.  Furthermore, the accuracy of the EAC is 

important for cost estimators when they are comparing the EAC with the PMB to 

determine if they are experiencing cost overruns or not.  A variety of methods for 

computing EACs are available and numerous studies have analyzed how effective each 

method is at producing accurate EACs. 

The most commonly used method of calculating an EAC is an indexed based 

approach.  This approach is simplistic and produces an EAC rather quickly.  Analysts 

calculate the EAC by taking the sum of two items:  1) The actual cost of work performed 

(ACWP) and 2) The remaining work, which is the Budget at Completion (BAC) minus 

the Budgeted Cost of Work Performed (BCWP), divided by a performance index.  The 

first part of the formula, ACWP, represents the amount of money spent on the project to 
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date.  The second part represents the estimate for remaining work.  By dividing the 

amount of work remaining, BAC minus BCWP, by a performance factor, we arrive at our 

estimate for how much the remaining work will cost.  This assumes that future 

performance will be similar to past performance.  The performance index used in this 

computation is usually the CPI, SPI, SCI, or a composite index (Christensen, 1994).  

While the indexed based method is the most commonly used way to calculate EACs, 

more complex methods are available that utilize forecasting techniques such as regression 

and time series analysis. 

 In 1995, Dr. Christensen reviewed 25 EAC studies.  In this review, he 

summarized two types of studies: 1) studies that provided new techniques for developing 

EACs and 2) studies that compared a variety of techniques to determine which techniques 

provided better EACs.  His review incorporates index-based methods, time series 

techniques, performance factors, and regression approaches.  When Dr. Christensen 

looked at the comparison studies, he concluded, “The accuracy of regression-based 

models over index-based formulas has not been established…additional research 

exploring the potential of regression analysis as a forecasting tool is badly needed” 

(Christensen, 1995).  This was due primarily to the fact that most studies had small 

sample sizes and some studies provided inconclusive results.  Furthermore, he stated, 

“The accuracy of index based formulas depends on the type of system and the stage and 

phase of the contract” (Christensen, 1995).  Dr. Christensen’s review of EAC research in 

1995 indicates that there is no best method for developing EACs for all contracts.  These 

conclusions make a strong case for the use of specific forecasting methods that perform 

better under specific circumstances. 
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 Following Dr. Christensen’s review of EAC research, several studies investigated 

the use of regression models.  In 2005, Captain Steven Tracy used multiple regression to 

develop EACs at five different points throughout the life of a contract.  He developed five 

different regression models which utilize anywhere from three to six predictors each in 

forecasting the EAC.  His results indicate that “the regression models generally dominate 

the performance with the early models, 25 and 35 percent complete, and begin to trade 

‘best’ performance with the index based models at the 50 and 65 percent complete 

points” (Tracy, 2005).  Therefore, Captain Tracy’s thesis shows that regression models 

might be able to outperform index methods, but only at certain times, a conclusion 

similar to that of Dr. Christensen’s in 1995. 

     Developing EACs Using a Growth Model 

 Similar to other recent efforts, in 2009 Captain Trahan attempted to find a 

superior method for developing EACs in her AFIT thesis.  She examined the tendency for 

Air Force acquisition contracts to incur costs in an “S” shaped manner.  That is, a 

contract tends to incur costs slowly at the beginning of its life, and then costs rapidly 

accrue until they taper off at the end.  Based on this trend, she investigated the use of the 

Gompertz growth curves as models to predict the EAC for a contract as these curves 

exhibit an “S” shape.  Figure 2 is an example of a growth curve that she applied. 
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Figure 2:  Development Growth Model (Trahan, 2009) 

 Using JMP®, Captain Trahan developed growth models of the functional form 

provided in Table 2.  Based on the models she developed with specific values for α, β and 

γ, she could calculate the contract’s growth in spending based on the percent time 

complete.  Using this estimated amount of growth, she calculated the EAC for each 

contract with the second formula in Table 2. 

Table 2:  EAC Formula Using Growth Model (Trahan, 2009) 

Gompertz Growth: GG(X) = α(exp(-exp(β-γ*X))) 

EAC: EAC(X) = ACWP(X) + [ (GG(1) – GG(X))*BAC] 

 
Once she developed three growth models for production contracts, development 

contracts, and mixed contracts (both development and production combined in one 

model), she compared the EAC estimates from the growth model to the actual costs at 

completion.  She also compared the EAC estimates from using index-based approaches to 

the actual costs of completion.  By using the Mean Absolute Percent Error (MAPE), 
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which compares the estimates to the actual costs, she was able to compare the predictive 

capability of the Gompertz growth curve EACs to the index based EACs.  The formula 

used for calculating the MAPE is in Table 3. 

Table 3:  MAPE Comparison (Trahan, 2009) 

Absolute Percentage Error  APE = Abs [ (EAC – TAC) / TAC ]  
Mean Absolute Percentage 
Error  

MAPE = ( Σ APE) / n  

EAC = Estimate at Completion; TAC = Total at Completion; n = 
number of contracts  

 

 Based on the MAPE comparisons for the Gompertz growth models and the index 

based models she concluded, “No best model exists [for all contracts] but our growth 

models present a better model than the popular index-based methods currently in use for 

estimating OTB contracts specifically”  (Trahan, 2009).  These results are similar to the 

findings of Dr. Christiansen and Captain Tracy in that this growth model may not be 

superior to the index based models in all cases, but this model does perform better in 

specific circumstances, primarily for OTB contracts.  Furthermore, “this new 

methodology adds a unique perspective and consistently performs more accurately 

compared to the CPI, SCI, and Composite Index-based [methods] on an average of 71% 

of unique OTB contracts” (Trahan, 2009). 

 Since Captain Trahan’s method of forecasting EACs is superior for OTB 

contracts, this thesis focuses on OTB contracts.  We attempt to build models that identify 

contracts that are likely to become OTB.  Once these models predict which contracts are 

likely to be OTB contracts, we can use the methods employed by Captain Trahan to 
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develop better EACs.  However, we must first understand what it means for a contract to 

be an OTB. 

Cost Overruns and the OTB Process 

Based on our analysis of contracts in the Defense Acquisition Executive 

Summary (DAES) database, twenty percent of the DoD’s acquisition contracts are not 

completed within their allocated budgets (CBB).  When a contract exceeds its allocated 

budget, it is termed a cost overrun.  When a contract is behind schedule, it is a schedule 

overrun.  While schedule overruns are common, the emphasis in the DoD tends to be on 

cost overruns. 

 Program managers can adjust the performance measurement baseline (PMB) in 

three major ways.  Depending on the type of adjustment to the PMB, the contractor may 

recognize a cost overrun.  The “three major categories [are]: authorized contract changes, 

internal re-planning, and inadequate remaining budget in the contract with a resulting 

requirement for an OTB” (Cukr, 2001). The first two categories are standard and require 

a minimal amount of work to remedy the situation in comparison to an OTB (Cukr, 

2001).  On the other hand, the process for implementing an Over Target Baseline (OTB) 

is very complex and an OTB implies that the acquisition program is in considerable 

trouble. 

Authorized contract changes include additional requirements or deviations that 

each organization allows based on changes in the scope of the work.  Authorized contract 

changes also include changes in the PMB related to work increments that did not 

originally have costs associated with them (un-priced work packages).  The contractor 



 15 
 

adds these additional costs to the PMB as if they were included in the original baseline.  

These authorized changes do not indicate a cost overrun. 

The second category, internal re-planning, occurs when the remaining work 

requires a new plan and certain work breakdown structure (WBS) elements may be 

experiencing cost overruns.  In this case, the contractor can develop a new plan for the 

entire contract that is within the original budget.  This prevents a cost overrun from 

occurring for the contract. 

Finally, an Over Target Baseline occurs when the work scope does not change 

and the contractor cannot complete the remaining work within the original budget (Cukr, 

2001).  According to the DAU’s handbook on OTBs: 

 An OTB is a contract budget base that was formally reprogrammed to include 
additional performance management budget and which therefore exceeds the 
contract target cost… [And] ANSI/EIA-748-1998 defines it as ‘a recovery plan, a 
new baseline for management when the original objectives cannot be met and new 
goals are needed for management purposes.’  (Defense Acquisition University, 
2003) 

 
When an OTB is used, the program manager is recognizing a cost overrun. 

 
 In the process of implementing an OTB, a new PMB is developed and the cost 

and schedule variances are set to zero.   This allows program managers to obtain a clean 

slate to work with.  While this seems to make an OTB the preferred method for dealing 

with substantial cost overruns in defense acquisition programs, contractors do not always 

utilize an OTB.  The OTB process is a lengthy 10-step process that can be very costly and 

take many months to complete.  These additional costs are associated with the 

implementation of an OTB and are over and above the overrun costs that a contract has 
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already incurred prior to the OTB.  Furthermore, any time spent on the OTB process may 

delay progress made on the contract itself. 

The Defense Acquisition University publishes the OTB/OTS handbook that 

describes in detail the ten steps in the OTB process.  Figure 3 illustrates this process.  The 

first step in the process is identifying the need for an OTB since it is not a required 

action.  Then, the contractor reviews the remaining work and revises the schedules and 

cost estimates.  After several reviews, the contractor and the government agree to the 

revised schedules and costs, which become the new PMB. 

 

Figure 3:  The OTB Process Flow (DAU, 2003) 
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While the contractor is ultimately responsible for the accuracy of the PMB, “The 

customer project manager [who is typically the program manager within the DoD] and 

business office will ultimately be held accountable for the significant changes an 

OTB/OTS can effect” (DAU, 2003).  Therefore, the OTB process is typically a joint 

effort between the supplier (the contractor) and the customer (program office or DoD 

representative for the contract). 

When a contract establishes a new baseline through the OTB process, it is a wake-

up call to the program and the program manager.  The decision to establish this new 

baseline implies that contract performance is out of hand and drastic changes are 

necessary to correct for deficiencies and to prevent the reoccurrence of past problems.  

The process of making a contract an OTB contract ensures that there is a true need for an 

OTB rather than establishing a new baseline just on the basis of improving EVM 

performance indices.  Furthermore, an OTB establishes a realistic plan and a baseline for 

the remaining work, which the contractors must follow.  Historically, some of the reasons 

provided for updating the PMB using an OTB include: 

 Estimate at Completion (EAC) is less than actual costs for some elements 
 Existence of zero budget work packages 
 Cost and schedule variance explanations are no longer meaningful 
 Inability to effectively use the performance data 
 Unrealistic activity durations and relationship logic 
 Depletion or rapid use of management reserve 
 Lack of Confidence in contractor’s EAC 

(Tiffany, 2004) 
  

Due to the low probability of identifying all of the expected problems for a 

contract and the inability to capture realistic estimates early on, contractors do not 

typically use OTBs early in a contract’s life.  Additionally, OTBs are not practical late in 
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a contract’s life as the time and money invested in developing a new baseline exceeds the 

potential benefits from having a new baseline late in a contract’s life.   Typically, a 

contract is only rebaselined through an OTB once, therefore, it is important to get the 

new baseline right.  While an OTB provides a contractor with the opportunity to establish 

new and realistic goals, the contractor and program office must consider it carefully to 

ensure that the benefits of a new baseline outweigh the costs incurred during the OTB 

process.  The purpose of an OTB is not to make the numbers look better, but instead its 

purpose is to fix an ailing program and establish a realistic baseline for measurement 

purposes. 

Identifying an OTB in Practice 

 When we develop our model to predict OTBs, it is helpful to understand where an 

OTB fits in and how to identify an OTB.  When the government pays a contractor for 

work, they pay a contract price.  Within the contract price, there are two components, the 

total allocated budget (TAB) and the profit or fees.  If the TAB equals the contract budget 

base (CBB), the contract has not experienced an OTB.  If the TAB exceeds the CBB, the 

difference between the two is an identified overrun and the contract has had an OTB.  

The CBB has two components: the negotiated contract cost (NCC) and authorized un-

priced work packages (AUWs).  When scope changes occur, the program office updates 

the NCC to include the additional work, which causes the CBB to increase.  When a 

contractor identifies the costs associated with AUWs, the CBB also increases.  Therefore, 

the CBB and TAB may change several times for a contract, but in this thesis, we are only 

concerned with changes that indicate that the TAB exceeds the CBB, which identifies 

OTBs and cost overruns.  Figure 4 depicts these relationships. 
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     Cost Overruns vs. Cost Growth 

 It is important to distinguish between “cost overruns” and “cost growth.”  A cost 

overrun, as shown in Figure 4, occurs when the TAB exceeds the CBB.   Any changes in 

the contract budget base (CBB) such as scope changes affecting the negotiated contract 

cost (NCC) or the pricing of authorized un-priced work (AUW) do not create a difference 

between the CBB and the TAB and therefore do not indicate a cost overrun.  A cost 

overrun occurs when the budgeted amount for a contract (including revised amounts) is 

less than the actual amount spent. 

 

Figure 4:  EVM Contractual Price Components (DAU, 2009) 

 On the other hand, cost growth refers to an increase in costs in comparison to the 

cost estimate at the beginning of the program.  Therefore, cost growth includes the costs 

associated with scope changes, which may relate to the technical requirements, the 

number of production units, or any other change affecting the program over time.  It is 



 20 
 

possible to have cost growth and no cost overrun, but the opposite is not possible as cost 

overruns are a subset of cost growth.   Often, authors of cost literature compare current 

costs to either the initial budget or the initial cost estimate.  These comparisons are 

referring specifically to cost growth and not cost overruns.  For the purpose of this thesis, 

we quantify cost overruns based on the DAU definition in terms of the CBB and TAB. 

Logistic Regression Two-Step Models 

 Analysts use logistic regression models, which predict dichotomous responses, to 

determine whether some event is likely to occur.  While there are many uses for logistic 

regression models, the DoD acquisitions community has benefited from the use of these 

models when examining costs and schedules.   

When researchers examine the costs of acquisition programs, they are often 

concerned only with those programs that are experiencing cost overruns or cost growth.  

They often ignore or give little attention to those programs that do not experience cost 

overruns or cost growth.  Therefore, the variable of interest is dichotomous:  cost growth 

or no cost growth. 

In the past decade, a series of studies investigate the ability to predict cost growth. 

From 2004 to 2006, The Journal of Cost Analysis and Management highlights the use of 

two-step models to predict cost growth.  White, et al (2004) first examined engineering 

cost growth for RDT&E dollars within the Engineering and Manufacturing Development 

(EMD) phase.  They “illustrate the use of logistic regression in cost analysis to predict 

whether cost growth will occur.  Given a program has a high likelihood of cost growth, 

[they] then use a log-transformed model to predict the amount of cost growth” (White, et 

al, 2004).  In 2005, Lt Genest and Dr. White “built upon this work and concluded that the 
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conjunction of logistic and multiple regression is also warranted when trying to model 

total RDT&E cost growth during EMD.”  A separate two-step study employing logistic 

regression and multiple regression “[concentrates] on cost growth in the procurement 

appropriation of the Engineering and Manufacturing Development phase of acquisition” 

(Rosetti and White, 2004).  In another study, published by the Cost Engineering journal, 

Major Bielecki and Dr. White also build a model to predict cost growth.  They use a 

similar process as the previous studies: 

First, the article looks at the utility of logistic regression on finding predictors of
 cost growth because of schedule changes [in RDT&E during the EMD phase
 and]…. secondly, given a program’s likelihood of experiencing cost growth, the
 article seeks to predict the degree to which cost growth occurs.  (Bielecki and
 White, 2005)   

 
In 2006, Captain James Monaco and Dr. White used a similar two-step approach.  

However, instead of looking at the cost of a program, they looked at the schedule.  They 

used “logistic and multiple regression… to predict if a program will experience schedule 

growth and, if applicable, to determine the expected percentage of schedule slip” 

(Monaco and White, 2006). 

In each of the cost growth studies, the authors employ a logistic regression model 

to predict the likelihood of cost growth for a specific category of acquisition contracts.  

By doing so, the authors identify a set of contracts that are likely to experience cost 

growth.  Next, each of the authors builds a multiple regression model and predicts the 

amount of cost growth for each of these contracts.  This two-step method allows the 

authors to focus only on those contracts that experience cost growth, the variables that 

influence the likelihood of cost growth and how much growth will occur.  Captain 
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Monaco and Dr. White employed a similar process to predict the amount of schedule 

slips. 

This thesis is similar to the previous two-step studies, but this thesis focuses on 

step one of a two-step model.  First, we build a logistic regression model that predicts the 

likelihood that a contract will be an OTB contract.  Then, based on our model, we 

identify a set of contracts that we expect to be OTB.  The second step comes from 

Captain Trahan’s thesis.  In the second step, we use the Gompertz growth model that 

Captain Trahan built to forecast EACs for OTB contracts.  This two-step procedure is 

valuable in developing better EACs since the growth model that Captain Trahan 

developed is only superior to indexed based methods of developing EACs for OTB 

contracts.  Therefore, the use of a two-step model allows us to focus on OTB contracts, 

opposed to looking at all contracts. 

Summary 

In this chapter, we discussed the concepts of EVM and a few of the EVM metrics, 

specifically as they apply to EACs.  There are various models used to develop EACs.  

Captain Trahan’s growth model is one such model, which pertains to OTB contracts.  

Therefore, we developed a better understanding of OTB contracts and the OTB process.  

Finally, we looked at several logistic regression models that are similar to the models that 

we build in this thesis.  In the next chapter, we develop a better understanding of the data 

and the logistic regression models used to predict OTB contracts. 
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III: Data and Methodology 

 
 
Introduction 

 In this chapter, we investigate the sources of data for our logistic regression 

models.  We describe the predictor variables and response variables and explain how the 

data must be normalized before it can be used in a regression model.  Then we explain 

why we chose to use a logistic regression model and how a logistic regression model 

works.  Finally, we describe the methods used to interpret the predictor variables and 

assess the predictive capability of the model. 

Data Sources 

 Since this thesis is concerned with predicting OTBs, we first look at data that 

indicates whether a contract is an OTB contract.  Second, we look for data that may help 

predict whether a contract becomes an OTB contract. 

The Defense Cost and Resource Center (DCARC) and the Defense Acquisition 

Management Information Retrieval (DAMIR) databases are the two main sources of 

earned value data for acquisition contracts.  The DCARC database contains the actual 

Cost Performance Reports (CPRs) submitted by the program offices.  Since these reports 

come directly from the program offices, this data is more reliable.  However, the DCARC 

database only contains submissions back to 2007.  This limits our ability to examine 

historical acquisition contracts.  Furthermore, if we identify contracts that are OTB 

contracts, there is a high likelihood that the necessary data for predicting an OTB is not 

available in the DCARC database.  Therefore, we are not able to use the DCARC 
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database for this thesis.  However, the DCARC database will be a good source of data for 

future analysis, as more data becomes available in the upcoming years. 

One section of the DAMIR database includes the Defense Acquisition Executive 

Summary (DAES) data on Major Defense Acquisition Programs (MDAPs) and Major 

Automated Information System (MAIS) programs.  This database includes earned value 

data taken from the CPRs submitted by the program offices.  The data submissions in 

DAMIR date back to 1997 and include CPR reports as early as 1967.  While there are 

many programs in the DAMIR database, only those contracts exceeding the $20 million 

dollar threshold requirement are required to submit CPR entries based on the EVM 

requirements in the DFARS. Therefore, our analysis is limited to these contracts.  

Furthermore, many of the inactive programs in the DAMIR database were undertaken 

prior to 1997 and do not have DAES reports available. 

For the analysis to be meaningful, we limit the data to contracts in between 1990 

and 2005.  The acquisition environment prior to 1990 is quite different from the current 

environment.  Furthermore, there is a limited amount of data available prior to 1990.  Our 

initial collection of DAES reports includes 10,933 CPR entries from 797 contracts for 

177 programs.  This includes contracts reported in DAES (electronically) for the Army, 

Navy, Air Force, and DoD acquisition programs.  For each contract entry, the following 

data is available: 

 program name 
 program number 
 program status:  active or inactive 
 branch of service 
 contractor 
 type of contract 
 contract number 
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 CPR report date 
 Budgeted cost of work scheduled (BCWS) 
 Budgeted cost of work performed (BCWP) 
 Actual cost of work performed (ACWP) 
 Management Reserve (MR) 
 Total Allocated Budget (TAB) 
 Contract Budget Base (CBB) 
 Estimate at Completion (EAC) 
 Program Manager’s Estimate at Completion (PMEAC) 
 Program Manager’s Estimated Completion Date (PMECD) 
 Schedule Variance (SV) 
 Cost Variance (CV) 
 Percent Schedule Variance (%SV) 
 Percent Cost Variance (%CV) 
 Schedule Performance Index (SPI) 
 Cost Performance Index (CPI) 
 Schedule Cost Index (SCI or SCPI) 

 
In order to build a suitable model to predict OTBs, we decided to search for 

additional predictor variables to consider in each of our models.  While the DAES reports 

provide useful earned value information, the DAMIR portal includes other data sources.  

Historically, many cost studies have utilized the Selected Acquisition Reports (SARs) as 

a source of program and contract information.  One section of the SARs, available 

through the DAMIR portal, provides information pertaining to production information 

and threshold breaches.  The production information addresses the quantity of units 

planned for, both for development and production, and the average procurement unit cost 

(APUC) over time.  The threshold breach data identify when specific Acquisition 

Program Baseline (APB) breaches occur along with when significant Nunn-McCurdy 

Breaches occur.  This additional data from the SARs includes the following: 
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 Development Quantity 
 Production Quantity 
 Total Quantity 
 Average Procurement Unit Cost (APUC) 
 APB Schedule Breaches 
 APB Performance Breaches 
 APD RDT&E Breaches 
 APB Procurement Breaches 
 APB MILCON Breaches 
 APB O&M Breaches 
 APB APUC Breaches 
 APB Program Acquisition Unit Cost (PAUC) Breaches 
 Current APUC Nunn-McCurdy Breaches (current baseline) 
 Current PAUC Nunn-McCurdy Breaches (current baseline) 
 Original APUC Nunn-McCurdy Breaches (original baseline) 
 Original PAUC Nunn-McCurdy Breaches (original baseline) 

 
Finally, additional characteristic data for each program is available in DAMIR.  

This information includes: 

 Program type (MDAP, MAIS, special interest, etc) 
 Acquisition Category (ACAT) (IC, ID, II, IAM, etc) 
 Commodity Type (Aircraft, Satellite, Missile, etc) 

 
Data Normalization 

 After collecting the data, we must ensure that the contract entries (CPR entries) 

are as consistent as possible for comparison and use in the modeling efforts.  We must 

also normalize the data to accommodate for the effects of inflation on the costs reported 

in the DAES database. 

One issue related to the contracts in the dataset is their duration.  While some 

contracts may span several months, other contracts span several years.  To accommodate 

for the different time lengths, we include percent complete as a variable that represents 

time.  In EVM terminology, percent complete is the cumulative budgeted cost of work 

performed (BCWP) divided by the budget at completion (BAC) (DAU, 2009).  The 
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DAES database does not report the BAC, but we can calculate the BAC based on other 

information in the database.  The budget at completion is the same as the performance 

measurement baseline at completion as depicted in Figure 1 (Chapter Two).  

Furthermore, the total allocated budget (TAB) is comprised of two elements:  the 

performance measurement baseline and the management reserve (see Figure 4, Chapter 

Two).  The performance measurement baseline upon completion, also known as the 

BAC, can be calculated by subtracting the management reserve from the total allocated 

budget.  Once the BAC is calculated, we can determine the percent complete for each 

contract entry and use this as our variable that accounts for the stage at which each 

contract is in. 

     Inflation 

A second adjustment accounts for inflation.  The cost data reported in the DAES 

database is in then year dollars (TY$).  However, for comparison, we want all of our 

costs to be in the same base year (BY$) so that any differences in costs are related to the 

program and not the effects of inflation.  The contracts in our dataset use the RDT&E, 

Procurement and Acquisition O&M appropriations.  The Office of the Under Secretary of 

Defense (OUSD) (Comptroller) publishes the annual raw inflation indices to convert 

dollar figures from one base year to another.  The OUSD comptroller also publishes the 

outlay rates for each appropriation.  These indices are in Appendix A and B respectively.  

In order to convert our costs from then year to base year dollars, we apply a weighted 

inflation index.  By using the raw index values and the appropriate outlay rates, we 

calculate a weighted index.  Since the dataset includes contracts for the Army, Navy, Air 
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Force, and DoD it is appropriate to choose outlay rates that are applicable across the 

DoD.  These weighted indices are in Appendix C.  The base year for this table is 2009. 

     Combining DAES and SARs Datasets 

 Since the DAES and SARs reports are in separate sections of DAMIR, it is 

necessary to combine the two for use in our analysis.  First, for each CPR entry, we 

match the program name (and program number) up with the program names listed in the 

characteristic reports in DAMIR.  This allows us to add the program type, acquisition 

category, and commodity type for each program to each CPR entry. 

 Second, the CPR entries (in DAES) must align with the SARs entries.  While 

CPR entries apply to specific contracts at specific dates, SARs entries apply to entire 

programs at specific dates.  To accommodate for this, we apply the program level SARs 

information to each contract for that program.  Based on the dates of the SARs and the 

dates of the CPR entries we align the CPR entries with SAR entries.  Since the SARs 

reports are less frequent than the DAES reports, we assume that the last reported quantity 

(in SARs) is the current quantity until a new SARs report is available. Additionally, we 

track whether or not a breach has occurred in each category (APB or Nunn-McCurdy) on 

a cumulative basis. 

     Management Reserve (MR) Missing Values 

 The Management Reserve Data field in DAES frequently has missing values in 

the DAES reports.  In order to include MR in our analysis, the values need to be available 

for the majority of our observations.  When the MR value is empty, we assume that the 

last reported value for MR is the current value for the MR. 

 



 29 
 

Data Assumptions and Limitations 

 In this thesis, our assumption is that the program offices accurately report the data 

in the DAMIR database.  This is a reasonable assumption since the dataset is limited to 

programs that are required to adhere to the EVM requirements according to the DFARS. 

 Furthermore, the contracts range between 1990 and 2005 due to the lack of a 

sufficient amount of data prior to 1990.  The 2005 limitation is to ensure that it is known 

whether a contract will become an OTB or not.  Since an OTB may not occur until the 

contract is far enough along, we do not want to include contracts where an OTB may still 

occur in the future. 

Furthermore, the analysis is restricted where certain data elements are 

unavailable.  When the total allocated budget (TAB) or the contract budget base (CBB) 

amounts are unavailable, it is impossible to determine whether a contract is an OTB by 

definition.  This prevents us from using these contracts in our analysis as identifying 

whether or not the contract is an OTB is required. 

 Since we need to normalize our data to account for inflation, we are required to 

identify each contract’s appropriation to convert costs to base year 2009 dollars.  While 

the DAES database does not report the contract’s appropriation, the DAMIR database 

includes additional information from the Selected Acquisition Reports (SARs).  

Fortunately, the SARs identify the contract’s appropriation.  However, not all contracts in 

DAES are available in the SARs section of DAMIR.  Therefore, we do not include 

contracts in our analysis where the appropriation is not available in the SARs.  The 

appropriations in SARs are available for approximately 85% of the contracts. 
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 Table 4 describes the final dataset that we use for analysis in terms of the number 

of programs, contracts, and CPR entries for each service.  In comparison to the initial 

data set, 14% of the entries are lost due to a lack of appropriation provided in SARs, we 

remove 4% of the entries due to them not being RDT&E or Procurement contracts, and 

1% of the entries are removed due to the inability to identify the OTB status.  This leaves 

approximately 80% of the original data set for analysis.  Therefore, the largest limitation 

is due to a lack of available appropriation categories for each contract.  We remove an 

additional 1400 entries because they have already experienced an OTB, but this is not a 

limitation since the purpose of this analysis is to predict OTBs when they have yet to 

occur.  Approximately half of the contracts in the final dataset are RDT&E contracts and 

half are Procurement contracts. 

Table 4: Final Dataset Used in Analysis 

Programs Contracts CPR Entries

Air Force 28 143 1315

Army 37 137 2326

Navy 42 211 2901

DoD 7 40 812

Total 114 531 7354  

The Response Variable:  Over Target Baseline 

 The next step is to identify the variables to include in our regression models.  

Since the objective is to predict OTBs, this variable is our response variable.  

Specifically, the response is a “1” if the contract will become an OTB in the future and a 

“0” if it will not become an OTB.  According to the Defense Acquisition University, an 

OTB is identified when the “sum of the budgets allocated to work, plus undistributed 
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budget and management reserve, known as Total Allocated Budget (TAB), exceeds the 

Contract Budget Base (CBB)” (2003).  Using this standard definition, we compare the 

TAB and CBB entries for each CPR submission to determine whether an OTB has 

occurred. 

 A second way to determine whether a contract is OTB is to consider the 

information the DAES database reports.  One data field for each contract is the OTB date.  

If there is a date in this field, this indicates when the most recent OTB occurred.  If there 

is no date present, an OTB has not occurred.  Within each contract in the DAES database, 

individual instances of OTBs occur when the CPR entry has a bold border. These entries 

often indicate the adjustments to specific performance measures and the baseline.  

However, there is a limitation to using what the DAES database reports as OTB.  This list 

only indicates those cases where the program offices identify an OTB within their CPR 

submissions.  DAES does not identify an OTB if the program office does not submit an 

OTB into the database. 

 For the purpose of our analysis, we use the standard definition of an OTB as 

provided by the DAU to identify OTBs.  Based on this definition, approximately one out 

of every five contracts has experienced an OTB. 

Predictor Variables 

 The main predictor variables in this model include cost, schedule, and 

performance metrics.  We also investigate the use of other potential predictors available, 

such as variables that identify contract or program characteristics.  The goal is to identify 

those metrics or characteristics that best indicate an OTB.  There has been very little 

research as to what indicates an OTB.  The OTB handbook that the DAU publishes refers 
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to a few reasons why contractors update a contract’s baseline through an OTB.  We list 

these reasons in Chapter Two, but are unable to identify the majority of these items based 

on the data available in the DAES and SARs databases.  This limitation occurs because 

these databases do not provide enough detail about each contract.  Based on this 

limitation and the fact that there is little research regarding what indicates an OTB, we 

consider a broad list of candidate variables to identify the best predictors of an OTB. 

Logistic Regression Models 

When analysts are interested in predicting a binary outcome, they typically use 

logistic regression models.  Since the OTB variable is binary, this makes logistic 

regression the ideal tool to use.  In this thesis, we build a logistic regression model that 

takes various predictors, both categorical and numerical, to try to predict whether an 

acquisition contract will become an OTB contract in the future.  Before beginning the 

model building process, we describe the logistic regression function and the parameters 

that depict a particular logistic function. 

When we plot binary data on a simple graph such as that in Figure 5, it becomes 

apparent that a linear regression technique does not provide a good fit.  Instead, when 

trying to apply regression techniques to binary data, it is preferred to use a curve that 

better approximates the data.  With a logistic function, analysts fit an S shaped curve to 

the binary data, which improves the fit for the model.  Figure 6 depicts a typical logistic 

regression curve.   
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Figure 5: Plot of Binary Data 

 

Figure 6: Logistic Regression Function (Dahl and Vandenberghe, 2009) 

Table 5 provides the simplest functional form of the logistic function with one 

predictor.  Here the outcome is denoted п(x) which represents the likelihood of an event.  

The terms B0 and B1 are parameters that describe our model.  The outcome in a logistic 

regression model can range anywhere from 0% to 100% since the model estimates the 

likelihood of an event. 
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Table 5: Logistic Regression Equation, Single Variable Model 

п(x) =  e B0 + B1 x         

               1+e B0 +B
1 
x
 

 
It is important to understand what the outcome of a logistic regression model 

means.  To provide a meaningful explanation, we consider the outcome in this thesis and 

explain how to interpret the response.  This thesis focuses on predicting whether a 

contract will become an OTB contract in the future.  If the outcome is an OTB, we assign 

a value of one to the contract and if the outcome is not an OTB, we assign a value of a 

zero.  Suppose we fit a logistic regression model and want to know if a new outcome is 

likely to be an OTB.  Furthermore, suppose the model has one predictor variable:  type of 

contract.  If the outcome of the logistic regression model is п(x) =.75 where x represents 

development contracts, this means a development contract has a 75% chance of 

becoming an OTB contract.1 

While the previous example of a single variable logistic regression model is easy 

to understand, logistic regression functions are often extended to include multiple 

predictor variables.  In the multivariate case, the logistic regression equation would be 

similar to the one in Table 6. 

Table 6: Logistic Regression Equation, Multivariate Model 

п(x) =  e B0+B
1
x 

1
+ B

2
x

2
+…+B

n
x

n 

              1+e B0+B
1
x

1
+B

2
x
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 + …+B

n
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n 
 
The statistical software packages use a maximum likelihood function to estimate 

the parameters (B0, B1, ... Bn) of the logistic regression function.  “The method of 

                                                 
1 This is a hypothetical example and does not represent an actual relationship. 
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maximum likelihood yields values for the unknown parameters which maximize the 

probability of obtaining the observed set of data” (Hosmer and Lemeshow, 2000). 

Interpreting the Predictors for the Logistic Regression Model 

 Once we develop a fitted logistic regression model, we want to interpret the 

parameters of the model.  One option is to use the odds ratio to identify how the predictor 

variables relate to the outcome.  With a dichotomous predictor variable (x), the odds ratio 

“approximates how much more likely (or unlikely) it is for the outcome to be present 

among those with x=1 than those with x=0” (Hosmer and Lemeshow, 2000).  For 

example, an odds ratio of OR=2 indicates that the outcome is twice as likely to occur 

with a predictor variable of x=1.  The odds ratio for a dichotomous variable is simply eB
1 

where B1 denotes the coefficient term for the dichotomous variable.  For a continuous 

predictor variable, the odds ratio is calculated as e (ΔX * B
1

).  In this case, B1 denotes the 

coefficient term for the continuous variable and ∆x denotes the given change in units for 

our variable.  However, this method of determining the odds ratio only applies to one 

variable models. 

 When the logistic regression model includes multiple variables, it may be useful 

to determine the effect of each characteristic or variable individually.  In order to 

calculate an odds ratio for the individual variable, the specific variable cannot interact 

with any of the other variables in the model.  Otherwise, we would need to calculate a 

more complicated odds ratio that depends not only on the variable of interest, but also on 

value of the other variables that interact with the variable of interest. 
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 Our model may end up with variables that interact to determine the likelihood of 

an OTB (our logistic regression response).  Furthermore, if the model contains several 

predictor variables, the computation of the odds ratio becomes more complex and the 

value of the odds ratio becomes difficult to interpret.  Therefore, we look at the use of p-

values to determine how important individual variables are in predicting OTBs.  When 

analyzing p-values, a value less than .05 indicates that there is a statistically significant 

relationship between that predictor and the response (assuming a 95% confidence level).  

Additionally, the lower the p-value for each predictor variable, the more influence it has 

on predicting OTBs.   

Assessing the Predictive Ability of the Model 

 Once we identify the predictor variables in our model, we need to decide whether 

the model adequately predicts the outcome.  When assessing regression models, analysts 

are concerned with the goodness of fit for the model, where the difference between the 

fitted values and actual values should be small.  We use the “Pearson residual, [which] 

measures the difference between the observed and fitted values …The summary statistic 

based on these residuals is the Pearson chi-square statistic” (Hosmer and Lemeshow, 

2000).  Therefore, we look at the associated Pearson chi-square statistic to determine the 

model’s goodness of fit.  

 Another measure of interest in assessing our model is the area under the Receiver 

Operating Characteristic (ROC) curve.  “The area under the ROC curve, which ranges 

from zero to one, provides a measure of the model’s ability to discriminate between those 

subjects who experience the outcome of interest versus those who do not” (Hosmer and 

Lemeshow, 2000).  When predicting OTBs we are only interested in those cases where 
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the outcome is an OTB.  First, we are concerned with the “probability of detecting the 

true signal (sensitivity)” which would be defined as the probability of predicting an OTB 

when an OTB has occurred (Hosmer and Lemeshow, 2000).  Secondly, we are concerned 

with the probability of detecting a “false signal (1-specificity)” which would be defined 

as the probability of predicting an OTB when an OTB when an OTB has not occurred 

(Hosmer and Lemeshow, 2000).   The plot of the true signal versus the false signal for all 

possible cutoff points is the ROC curve.  The cutoff point is the point at which we predict 

an outcome to be an OTB if it is greater than the cutoff point and not an OTB if it is less 

than the cutoff point.  According to Hosmer and Lemeshow’s description, Table 7 

describes the model’s ability to discriminate. 

Table 7: Interpreting the Area Under the ROC Curve (Hosmer and Lemeshow, 2000) 

If ROC = 0.5 This suggests no discrimination 
(i.e., we might as well flip a coin) 

If 0.7 ≤ ROC < 0.8 This is considered acceptable discrimination 

If 0.8 ≤ ROC < 0.9 This is considered excellent discrimination 

If ROC ≥ 0.9 This is considered outstanding discrimination 

 

 An additional method for determining how good our model is at accurately 

predicting OTBs is to consider how far the models are off in accurately predicting OTBs.  

For example, suppose we use a cutoff point of 0.5 and identify all contracts with a 

probability of becoming an OTB greater than 0.5.  We predict that these contracts will be 

OTB contracts and then examine which of these predictions are incorrect.  The difference 

between the cutoff point and the individual contract’s probability of becoming an OTB 
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determines how far off the model is in accurately predicting OTBs.  Suppose we use a 

cutoff of 0.5 and the contract’s probability of becoming an OTB is 0.55, yet the contract 

does not become an OTB in the future.  In this case, the model is not far off since the 

difference is only 0.05.  Instead, suppose the contract’s probability of becoming an OTB 

is 0.90 (a high chance of becoming an OTB) but it does become an OTB.  In this case, the 

model is far from accurately predicting OTBs.  We use this process in assessing our 

model in the validation phase of our analysis. 

Summary 

 In this chapter, we described our data set and the variables to consider including 

in our logistic regression model.  We also explained how a logistic regression model 

works.  Finally, we explained how we assess the model and the variables included in the 

model.  The next chapter applies these methods to build logistic regression models to 

predict the likelihood of a contract becoming an OTB contract. 
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IV: Results and Analysis 

 
 
Introduction 
 
 This chapter describes the logistic regression models that predict the occurrence 

of an OTB.  We construct multiple models to predict OTBs and analyze their predictive 

capability and validity to determine which model or models are superior.  We are 

interested in four primary measures in assessing which models have the best predictive 

capability.  First, we measure the overall significance of the model with the chi-square 

statistic and its associated p-value.  Second, we assess the significance of each of the 

predictor variables with the associated p-values.  Third, we wish to know how well the 

model discriminates between properly identifying an OTB and falsely identifying an 

OTB as measured by the area under the ROC curve.  Finally, we examine how well the 

model accounts for or explains the result as measured by R2(U).  Based on these four 

factors we choose our final models.  Then we run a validation on our models to test 

whether or not these models do work and whether these models apply to other contracts. 

Distinguishing Between Production and Development Contracts 

Previous studies modeled development and production contracts separately due to 

their inherent differences.  In our dataset, there is no explicit identification of 

“development” or “production” contracts.  However, the RDT&E appropriation aligns 

well with the concept of a “development” contract and the Procurement appropriation 

aligns well with “production” contracts.  We model these two categories separately in this 

thesis as RDT&E contracts and Procurement contracts.  The initial attempt to model all 

types of contracts in one model provided no significant models to predict OTBs.  



 40 
 

Therefore, this thesis models contracts in the same manner that previous cost studies 

used, which is by contract type. 

Approach to Developing Models 

 Prior to building any models, we randomly select twenty percent of the data 

points to exclude.  We reserve this data for use in the validation stage.  We use the 

remaining eighty percent of the data to develop our models. 

 We employ JMP® to develop logistic regression models for RDT&E and 

Procurement Contracts using three different approaches to arrive at the best models.  

Each model uses the variables discussed in Chapter Three as candidate predictor 

variables.  First, we used the stepwise function in JMP®, with the “mixed” direction, 

which is a combination of the “forward” and “backward” stepwise techniques.  Using a 

p-value of 0.15 for the probability to leave and probability to enter, JMP® adds and 

removes predictor variables one by one based on their predictive capability until no other 

changes are possible.  Using this method, we develop several models, which include five 

to ten predictor variables. 

 Secondly, we attempt a process by which all of the potential predictor variables 

are included and then we remove variables one by one based on their predictive ability.  

This is a “backward” stepwise procedure.  In this case, predictors with high p-values have 

less predictive capability and they are excluded from the model one at a time.   Using this 

process, we develop additional models are that contain five to ten predictor variables. 

Since our database includes over 75 potential predictor variables, we make some 

modifications to our second attempt to seek out more models in a third approach.  By 

excluding variables one by one, it is possible to eliminate a predictor variable at an earlier 
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stage in the process even though it may be significant in a separate model.  Therefore, we 

also chose to develop additional models by adding in variables that we consider good 

candidate variables.  This method is rather exploratory as we continually repeat this 

process of adding and removing each of the candidate variables to search for better 

models.  Certain variables such as the contract type (fixed price, cost plus incentive fee, 

etc) and the majority of the commodity types (ship, missile, aircraft, etc) never appear to 

be significant when added to the models.  Based on findings such as these, the focus is on 

adding other variables that tend to be significant such as EVM performance metrics (CPI, 

SPI, EAC, etc) and production quantities. 

 In each of our models, there are approximately 2,000 observations2.  When 

building each model, we would like our ratio of observations to predictor variables to be 

greater than or equal to ten (Neter, et al, 1996).  Since there are a sufficient number of 

observations, it is possible to include many predictor variables based on this rule of 

thumb.  However, the purpose of this thesis is to provide a model that can reasonably 

predict OTBs and explain why contracts become OTBs.  A model with too many 

variables gets to be cumbersome and difficult to interpret.  Therefore, we limit the 

number of predictor variables in each model to ten or less. 

Logistic Regression Models for Development (RDT&E) Contracts 

 Using the contracts denoted by the RDT&E appropriation, we develop several 

models to predict whether a development contract will become an OTB contract in the 

future.  Each of these models contains five to nine predictor variables.  To determine 

                                                 
2 This is for both RDT&E and Procurement models.  This accounts for 80% of the data, which we chose 
randomly for the development of our models. 
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which model is the best for a given number of variables, a comparison of the R2(U) 

statistic in JMP® is used.  R2(U) is defined as: 

The proportion of the total uncertainty that is attributed to the model fit…which is 
the difference between the negative log-likelihood value of the full model and the 
negative log-likelihood value of the reduced model divided by the negative log-
likelihood value of the reduced model. (JMP®, 2009) 
 

We interpret this statistic in the same manner as R2 in a linear regression model.  

Typically, logistic regression models do not tend to have high values for R2(U).  Based 

on the R2(U) values for each of the models developed with n predictor variables (where n 

is less than or equal to 10), the best model with n predictor variables is the model with the 

most explanatory power as indicated by the highest R2(U) value. 

 Based on our evaluation of R2(U) for each model with a specific number of 

variables, four different development models are developed (one model for each of six to 

nine variables).  The R2(U) statistic ranged from 0.18 to 0.24 and the area under the ROC 

curve ranged from 0.79 to 0.83.  For our models to be significant we would like a p-value 

associated with the Pearson chi-square statistic of less than 0.05.  In each model, the p-

value is less than 0.0001, which indicates that each model is statistically significant.  

Similarly, each predictor variable is statistically significant when its p-value is less than 

0.05.  In each model, each variable has a p-value of 0.0051 or less indicating that each of 

the predictor variables is statistically significant.  Furthermore, the ability to discriminate 

between properly identifying OTBs and not is considered to be either acceptable or 

excellent based on the guidelines for the area under the ROC curve provided in Chapter 

Three.  However, the model’s ability to explain the results is low based on the low R2(U) 

values. 
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Since there is not much of a difference between the R2(U) statistic and the area 

under the ROC curve for each of the models, we choose two models to consider which 

have fewer predictor variables.  This provides the user with a simpler model with almost 

as much predictive power as the more complex models.  Each of these models has 

slightly different predictors to consider, one with five variables and one with six 

variables.  The regression results for development contracts are in Appendix D.  Table 8 

provides the summary output and parameters for each of these models. 

Each of the predictors in these models has a significant effect on the likelihood of 

an OTB based on its associated p-value.  To interpret these predictors, we must first 

recognize that the sign on the coefficient term that JMP® produces is the opposite of its 

sign in the typical logistic regression equation.  By reversing the signs, we can interpret 

the predictor variables more easily.  The results indicate that Air Force, Navy, and fighter 

aircraft contracts are more likely to experience an OTB.  Contracts with a low SPI*CPI, 

also known as the SCI, are more likely to experience an OTB.  A low SPI*CPI occurs 

when the contract is behind schedule, over budget, or both.  In the five variable model, a 

contract that has not experienced an APB Performance breach yet is likely to experience 

an OTB.  In the six variable model, contracts with a high EAC and contracts with a low 

value for % complete are more likely to experience OTBs.  That is, a contract that is in 

the early stages in terms of percent complete is more likely to experience an OTB. 
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Table 8:  Development Model Parameters 

           Development (RDT&E) Contracts
                   Coefficients and P values

5 Variable Model 6 Variable Model

Intercept
‐2.12134

(0.0001)

‐3.10318

(<.0001)

Air Force
‐1.74879

(<.0001)

‐1.40268

(<.0001)

Navy
‐1.68322

(<.0001)

‐1.61499

(<.0001)

Fighter
‐2.09911

(<.0001)

‐1.39849

(<.0001)

SPI*CPI
4.98886

(<.0001)

5.63935

(<.0001)

EAC (BY09$)
‐0.00013

(<.0001)

% Complete
0.98411

(<.0005)

APB Performance
0.44962

(0.0051)

                           Summary Statistics

R Square (U) 0.1953 0.1832

Area under ROC curve 0.80432 0.79467

Whole Model Test

P Value (Prob>ChiSq)
<.0001 <.0001

 

Logistic Regression Models for Production (Procurement) Contracts 

 Using the contracts denoted by the Procurement appropriation, we develop 

several models to predict whether a production contract will become an OTB contract.  

Using the same method of comparing various models based on the R2(U) statistic, we 

arrive at five different production models (one model for each of six to ten variables).  

The R2(U) statistic ranged from 0.18 to 0.22 and the area under the ROC curve ranged 

from 0.78 to 0.83.   Similar to our regression models for development contracts, all of our 

models are statistically significant with p-values less than .0001 and each of the variables 

in the model is statistically significant with the highest p-value for a predictor variable 

being 0.001.  Again, our ability to discriminate between properly identifying OTBs and 
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not is considered to range from acceptable to excellent based on the guidelines for the 

area under the ROC curve.  However, the model’s ability to explain the results is low 

based on the low R2(U) values. 

Similar to our case for development contracts, there is not much of a difference 

between the R2(U) statistic and area under the ROC curve for each of the models.  

Therefore, we choose two models to consider which have fewer predictor variables.  This 

provides the user with a simpler model without compromising much predictive power.  

Each of these models has slightly different predictors.  One model contains five variables 

and the other contains seven variables.  The regression results for development contracts 

are in Appendix E.  Table 9 provides the summary output and parameters for each of 

these models. 

To interpret the predictor variables in each of these models the signs of the 

coefficients are reversed.  Contracts that have a high BCWS and a low BCWP are more 

likely to experience an OTB.  This means that contracts with a large amount of work 

scheduled (BCWS) and a small amount of work performed (BCWP) are more likely to 

experience an OTB.  Contracts that have experienced a large change in the production 

quantity since the initial report are more likely to experience an OTB.  A contract that has 

experienced an APB schedule breach is also more likely to experience an OTB.  For the 

five variable model, a contract with a large EAC is more likely to become an OTB.  For 

the six variable model, a contract with a low value for % complete (early on) and has 

experienced an APB performance breach is more likely to experience an OTB. 
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Table 9: Production Model Parameters 

      Production (Procurement) Contracts
                 Coefficients and P values

5 Variable Model 7 Variable Model

Intercept
2.99823

(<.0001)

2.45622

(<.0001)

BCWS (BY09$)
‐.02918

(<.0001)

‐.03368

(<.0001)

BCWP (BY09$)
0.03472

(<.0001)

0.03724

(<.0001)

MR (BY09$)
‐0.01627

(<.0001)

EAC (BY09$)
‐.00108

(<.0001)

% Complete
1.92580

(<.0001)

% Change in 

Production Quantity

‐0.00117

(<.0001)

‐0.00140

(<.0001)

APB Schedule
‐0.73515

(0.0010)

‐0.84723

(0.0002)

APB Performance
‐1.07029

(<.0001)

                           Summary Statistics
R Square (U) 0.1840 0.2042

Area under ROC curve 0.78087 0.80413

Whole Model Test

P Value (Prob>ChiSq)
<.0001 <.0001

   

Validation of Logistic Regression Models 

Before coming to the conclusion that these models can be applied to predict 

OTBs, we must validate their predictive ability.  Using the 20% of the data that we 

initially set aside, we test the performance of the final four models.  Since the positive or 

negative signs of the coefficients for each predictor in JMP® are the opposite of what they 

would be in the standard logistic regression equation presented in Table 6 of Chapter 

Three, we must adjust our logistic regression equation.  For computational purposes, we 

calculate the logistic regression response by using the formula in Table 10 along with the 

values that JMP® provides for the coefficients B0, B1... Bn. 
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Table 10: Computational Form of Logistic Regression Equation 
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For each entry in the validation set, we compute the logistic response, which is the 

predicted likelihood that a contract will become an OTB contract.  The model uses a 

cutoff of 0.5 to determine whether we predict an OTB with our model.  If the logistic 

response is greater than 0.5, we identify the entry as a predicted OTB and code it as a 

one.  If the logistic response is less than 0.5, we identify the entry as not being a predicted 

OTB and code it as a zero.  The validation involves comparing these values with the 

actual values of whether a contract becomes an OTB.  When the predicted value is a one 

and the actual value is a one, we correctly predict an OTB.  When the predicted value is a 

one and the actual value is a zero, we incorrectly predict an OTB.  Table 11 provides a 

summary of the validation results for the development (RDT&E) and production 

(Procurement) contracts. 

We first interpret the results for the development contracts (RDT&E).  When an 

OTB is predicted (Prediction = 1), the prediction is only correct approximately fifty 

percent of the time (Prediction=1, Actual=1).  Furthermore, the model frequently fails to 

predict an OTB when an OTB occurs (Prediction=0, Actual=1).  Based on these findings, 

we conclude that these models are not good predictors of RDT&E OTB contracts. 

When analyzing the results for the production contracts (Procurement), we find 

that we rarely predict an OTB in comparison to the actual instances of an OTB.  

However, when an OTB is predicted (Prediction=1), the prediction tends to be correct 

since there are very few instances of incorrectly predicting an OTB (Prediction=1, 
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Actual=0).  While this may appear to be a good outcome, the objective is to identify 

OTBs.   Since the models fail to identify the majority of OTBs when they occur, the 

conclusion is that these models are not good predictors of Procurement OTB contracts. 

Table 11: Model Validation Results 

RDT&E 5 Variables

Outcome
Prediction Actual Frequency

0 0 592

1 1 27

0 1 112

1 0 30   

RDT&E 6 Variables

Outcome
Prediction Actual Frequency

0 0 580

1 1 24

0 1 113

1 0 29  

Procurement 5 Variables

Outcome
Prediction Actual Frequency

0 0 587

1 1 6

0 1 51

1 0 0   

Procurement 7 Variables

Outcome
Prediction Actual Frequency

0 0 572

1 1 8

0 1 49

1 0 2  

Recall in Chapter Three, that to determine how close the model is to accurately 

predicting OTBs, we can consider how far off our predicted values are from the cut-off 

point, which is 0.5.  When examining the inaccurate predictions (either prediction=1 and 

actual=0 or prediction=0 and actual=1), the logistic responses for these inaccurate 

predictions are far from the cutoff point of 0.5.  Therefore, the cutoff point that we 

choose does not affect our predictive capability.  Since this process of predicting OTBs 

did not produce sufficient models for predicting OTBs, we seek other methods to refine 

our models. 
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Additional Attempts at Predicting OTBs 

One method to try to improve the model’s predictive ability is to limit the data set 

to a more applicable period.   In Figure 6, the box plot for the value of percent complete 

one period prior to an OTB indicates that OTBs tend to occur midway through a 

contract’s life.  Since OTBs do not tend to occur early or late in a contract’s life, we 

attempted to build models that exclude data beyond a certain value of percent complete, 

specifically looking at the values of 60% and 70% complete.  By excluding data points 

beyond these periods, the models still lacked sufficient predictive capability.  We also 

considered models that only included data points in the ranges of 10-60% complete and 

20-70% complete.  Again, neither of these models produced significant results. 

 

Figure 6:  Box Plot of % Complete Prior to OTB 

A second method is to search for trends in OTB contracts.  By identifying a 

common trend, we can see if this trend exists in non-OTB contracts.  Since the OTB 

process is not a mandatory process, it is possible to flag non-OTB contracts as contracts 
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that were candidates for an OTB.  Then we can develop new models that incorporate the 

identification of OTBs along with OTB candidate contracts.  Unfortunately, we were 

unable to identify any common trends among the OTB contracts.  This suggests that the 

process of identifying contracts to become OTB may be random since the OTB process is 

an optional step. 

Finally, there is an alternative method for identifying OTBs.  All of the previous 

models use the standard definition of an OTB provided by DAU, which defines an OTB 

based on the TAB exceeding the CBB.  However, the DAES database also has a data 

field that identifies an OTB when the program office reports an OTB in the DAES 

database.  When we rerun our models based on this alternative way of identifying an 

OTB, we obtain similar results to what we have already found:  correct OTB predictions 

approximately half of the time and the failure to predict the majority of OTBs.  This 

alternative also fails to provide better predictive capabilities. 

Conclusion 

After the initial model building attempts that considered all of the available 

predictors, interactions between predictors, and changes in predictors along with the 

additional attempts to develop predictive models, we conclude that the models are unable 

to predict OTBs based on the data available to us.  In the next chapter, we discuss the 

implications of these findings. 
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V: Discussion and Conclusion 

 
 

In this chapter, we recall the purpose of this thesis and the results from the 

analysis.  We discuss the implication of our results and what policy implications our 

results provide.  Finally, we suggest some potential areas for future research related to 

earned value management. 

Thesis Purpose 

In 2009, Captain Trahan developed a growth model, which improves EACs for 

contracts that are Over Target Baselines (OTBs).   To apply this model to improve EACs, 

the contract must be an OTB or it must become an OTB in the future.  This thesis 

attempts to predict OTB contracts with the intent of applying Captain Trahan’s model to 

develop better EACs.  By improving EACs, cost estimators provide the DoD with the 

capability to provide more content to the war fighter.  A high EAC limits the ability to 

acquire additional capabilities with the additional (unnecessary) funds allotted to a 

program.  A low EAC creates problems for the program with a low estimate since it will 

require additional funds to deploy that capability to the field.  Furthermore, when one 

program has too low of an EAC, the services (Army, Navy, Air Force, etc.) tend to 

borrow money from other programs and this causes problems for all of the programs 

involved.  In addition to improving EACs, the ability to predict OTBs allows decision 

makers to identify cost overruns since an OTB formally recognizes cost overruns. 

Summary of Results 

 We built separate logistic regression models to predict OTB contracts for 

production and development contracts and chose four models to use based on an 
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evaluation of the predictive capabilities for each of the models.  These models contain 

five to seven predictor variables capturing EVM metrics, production information, and 

threshold breach information.  While we were able to develop significant models for the 

model building set, all of the models failed in the validation stage.  The validation results 

indicate that the ability to predict OTBs is no better than a coin flip.  Furthermore, the 

models fail to predict the majority of OTBs when they occur.  Since our objective is to 

identify OTBs, the failure to predict an OTB is substantial.  Additional attempts at 

refining the model based on the definition of an OTB and the period considered also 

proved unsuccessful.  Based on these results, we are unable to predict an OTB. 

 However, in one of the attempts, we examine a variety of predictor variables from 

the regression models.  In this analysis, there were no common trends in these variables 

for OTB contracts.  This is an important observation as it suggests that OTBs may occur 

randomly, which would explain the inability to predict OTBs. 

Policy Implications 

 Since OTBs are not required and contractors conduct OTBs at their discretion, 

contractors may not utilize the OTB process when it may be beneficial to them.  

Furthermore, the limited number of OTB contracts limits the amount of cost overruns that 

the DoD can quantify.  Without the use of OTBs, decision makers can identify cost 

growth, but the ability to quantify cost overruns becomes much more difficult. 

 Perhaps contractors could be required to distinguish between increased costs due 

to requirement changes and increased costs due to cost overruns or contract performance 

issues.  This topic needs to be addressed carefully as contractors are less likely to report 

contract performance issues and are more likely to report increased costs due to 
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requirement changes.  One option is to require contractors to estimate the costs of the 

specific requirement changes opposed to presenting a revised single estimate for the 

entire program when a requirement change occurs.  Another way to prevent contractors 

from hiding cost overruns in a new baseline would be to require contract changes be 

implemented in a follow on increment or to use a spiral acquisition strategy. 

 The ability to identify cost overruns separately from cost growth allows decision 

makers to measure a contractor’s performance.  If the DoD can require contractors to 

report cost overruns or create an environment that prevents contractors from hiding 

overruns, such as with a spiral acquisition strategy, the DoD could better evaluate and 

manage contractor performance.  With increased visibility into the costs incurred by the 

DoD, cost estimators could identify the reasons for increased costs and recommend 

actions to control costs. 

Future Research 

 The OTB process appears to be random within the DoD.  So decision makers 

must ask the question, why do contractors use it?  The DAU guide on OTBs explains the 

purpose of an OTB, but it does not quantify the benefits realized for OTB contracts.  One 

possible research topic would be to quantify the benefits of a contract going through the 

OTB process versus not going through the OTB process.  This would determine if the 

process is worthwhile or not. 

 Additionally, in the process of collecting data, we discovered that the DCARC 

database has more detailed CPR data available along with the original CPR submissions.  

Researchers should use the DCARC database for studies that require EVM data on recent 

contracts since the data is more reliable.   However, since the database only includes 
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entries back to 2007, researchers should wait until more data becomes available to 

conduct extensive studies. 
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Appendix A:  The Office of the Under Secretary of Defense (OUSD) (Comptroller) 

Raw Inflation Indices 
 
 

 
        (Office of the Under Secretary of Defense (Comptroller), 2009) 



 56 
 

 
Appendix B:  The Office of the Under Secretary of Defense OUSD (Comptroller) 

Outlay Rates 
 
 

Table 5-11: Outlay Rates for Incremental Changes in BA Purchases

Outlay Profiles: 1st Year 2nd Year 3rd Year 4th Year 5th Year 6th Year 7th Year
Procurement (Defense Wide) 0.23 0.41 0.25 0.07 0.02 0.01 0.01
RDT&E (Defense Wide) 0.44 0.43 0.07 0.04 0.01 0.01
O&M (Defense Wide) 0.51 0.40 0.05 0.02 0.01 0.01  

(Office of the Under Secretary of Defense (Comptroller), 2009) 
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 Appendix C:  Weighted Inflation Indices 

 
 

Weighted Indices (base year of table: 2009)
Procurement RDT&E O&M

1970 21.20 20.95 17.57
1971 22.67 22.10 18.60
1972 24.55 23.49 19.82
1973 26.95 25.43 21.56
1974 29.78 27.94 23.74
1975 32.57 30.75 25.90
1976 35.02 33.35 28.25
1977 37.97 35.86 30.58
1978 41.89 39.44 32.98
1979 46.06 43.54 36.38
1980 50.00 47.35 41.44
1981 53.37 50.61 44.83
1982 56.04 52.96 46.64
1983 58.15 54.95 47.78
1984 60.01 56.85 48.86
1985 61.91 58.54 49.89
1986 64.03 60.32 50.98
1987 66.38 62.53 52.83
1988 68.79 65.06 54.91
1989 71.06 67.56 57.24
1990 73.06 69.89 60.41
1991 74.76 71.96 63.26
1992 76.26 73.43 62.49
1993 77.65 74.63 62.41
1994 78.92 76.12 64.07
1995 80.04 77.61 65.75
1996 81.01 78.92 67.38
1997 81.96 80.04 69.26
1998 83.05 81.05 71.39
1999 84.26 82.29 73.15
2000 85.56 83.78 75.32
2001 87.03 85.19 78.17
2002 88.84 86.74 80.90
2003 91.02 88.75 83.91
2004 93.35 91.21 87.52
2005 95.56 93.72 91.65
2006 97.48 96.02 94.69
2007 99.09 98.01 97.50
2008 100.53 99.66 99.83
2009 102.04 101.12 101.35
2010 N/A 102.68 103.78  
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Appendix D:  Logistic Regression Models: Development Contracts 
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Appendix E:  Logistic Regression Models: Production Contracts 
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